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T H E  U N I V E R S I T Y  O F  N E W  M E X I C O

Motivation

In order to combat the illicit trafficking of nuclear 

materials, Radiation Detection Systems (RDS) are used 

to scan pedestrians, vehicles, cargo, luggage, and other 

conveyances. Many of these systems are used in an “in-

motion” configuration where the detector or target are 

moving past the other. Current modeling and simulation 

tools lack the ability to produce time-series detector 

response profiles for in-motion applications.
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T H E  U N I V E R S I T Y  O F  N E W  M E X I C O

Background

 NSDD* deploys variety of detection systems

 Time & resource intensive test campaigns

 Evaluating proprietary algorithms

 Simulation & modeling tools ease burden

 Model specific to detector system for replay and 

algorithm evaluation

*Funding Agency

4



T H E  U N I V E R S I T Y  O F  N E W  M E X I C O

Background

 Goal of this project to produce tool that can be used 

to inform test campaign measurements

 Determine best configuration to be able to detect 

target quantity of threat material in a specific use-case

 Quickly test many configurations to produce ROC 

curves and/or turn-on (s-curve)
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Experimental Setup – RS-700

 Radiation Solutions Inc.

 Modular & highly 

configurable system

 Promising results in 

previous work at LANL

 Several use-cases being 

considered by NSDD
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Experimental Setup – RS-700

 4-2”×4”×16” NaI crystals

 Controller + RadAssist

 External on utility trailer

 Virtual detector 

configuration

 1024 channel MCA with 

automatic gain 

stabilization
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Simulation Flowchart
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Experimental Setup – Profile 

Measurements

 Basis set

 Long dwell, low 

statistical uncertainty

 11 measurement 

locations

 6 sources used

 HEU, DU, WGPu, 
133Ba, 137Cs, 57Co
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Experimental Setup – Source-in-Vehicle 

Measurements

 Centerline only
 Long dwell, low 

statistical uncertainty
 Primitive for change 

in spectrum due to 
shielding

 Distance and height 
of each source 
measured
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Experimental Setup – Background 

Variation Measurements

 Drive-about @ 

Coronado Mall

 ~3 hours data 

collected at constant 

speed

 Representative of 

urban area 

background variation
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Experimental Setup – NORM Gradient 

Measurements

 Engineered NORM 

gradient

 Injected into simulation 

for detector-in-motion 

trials

 Background variation 

may challenge TIA

 Sampled from drive-

about distribution
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Experimental Setup – Verification 

Measurements

 In-motion 

measurements

 17 configurations as 

MDS

 Used to validate 

output of simulation
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Experimental Setup – Gantry 

Measurements

 Used simulation tool 

to choose distance & 

shielding

 8 configurations

 Close to limits of 

detection
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Simulation Methodology – Basic User 

Inputs

15



T H E  U N I V E R S I T Y  O F  N E W  M E X I C O

Simulation Methodology – Advanced User 

Inputs
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T H E  U N I V E R S I T Y  O F  N E W  M E X I C O

Simulation Methodology – Running the 

Simulation

 Initialize Variables

 Multi-Threading Individual Trials

 Integrate Detector Response Curve

 Create trial

 Write Output
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Running the Simulation – Initialize 

Variables

 Configuration settings from basic and 

advanced UI initialized globally

 These variables do not change from one 

trial to another

 Faster than setting them for each 

individual trial
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Running the Simulation – Multi-Thread 

Individual Trials

 Tool queries PC to determine number of 

logical processors

 Total number of trials evenly distributed 

among available processors

 Trial numbers pre-assigned to prevent 

overwriting
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Running the Simulation – Integrate 

Detector Response Curve
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Running the Simulation – Integrate 

Detector Response Curve
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Running the Simulation – Create Trial

 15 seconds background added to front and 
back of trial

 Individual source primitives are combined to 
a single one

 Multiplied by ε at each timestep from integrated 
detector response

 Background gradient applied from -5 to +5 
meters
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Running the Simulation – Write Output

 .n42 & .rsv files are created

 .n42 is ANSI standard format, time-series 

spectra for each virtual detector

 .rsv is RSI “survey” file, which contains 

same information as .n42, but can be 

loaded into RadAssist replay tool
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Results & Analysis – Detector Response 

Profile

 6 source average

 Specific ROI for 

each source

 Normalized to 

center 

measurement
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Results & Analysis – Background Variation

 ~54,000 data 

points

  𝑋 = 0.0
𝑐𝑝𝑠

10𝑚

 σ = 10.4
𝑐𝑝𝑠

10𝑚

 Detector-in-motion 

simulations sample 

randomly or select 

percentile
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Results & Analysis – Simulation 

Components
Background

Source

Background Gradient
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Results & Analysis – In-Motion 

Comparisons

 MDS setup – 17 configurations

 Gantry setup – 8 configurations

 Limited SNM & DU results presented

 Spectral ROI comparisons

 RSI TIA comparisons
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Results & Analysis – Bare Sources 
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Results & Analysis – Steel Shielded 

Sources
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Results & Analysis – HDPE Shielded 

Sources
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Results & Analysis – Source in Vehicle
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Results & Analysis - Gantry
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Results & Analysis – Spectrum 

Comparison
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Results & Analysis – TIA SNR Comparison
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Results & Analysis – TIA SNR Comparison
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T H E  U N I V E R S I T Y  O F  N E W  M E X I C O

Results & Analysis – Assumptions & 

Limitations

 Non-uniform shielding
 Streaming paths
 “Standard Vehicle”

 Pulse pile-up
 Deadtime
 25 Sources
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Conclusions

 Goal of tool to inform about what physical measurements should 
be included in test campaign and identify best configuration to 
use.

 Generally good agreement between simulated and measured 
data; successful in goal of the project, not an exact answer.

 10 of 17 in-motion ROI time-series comparisons had overlapping 
error bars (5 of 7 outside of this were in-vehicle comparisons)

 Source-in-vehicle results not expected to be perfect with known 
streaming path and non-uniform shielding; could improve results 
by measuring profile and changing cubic spline
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Conclusions

 When accounting for background suppression, 6 of 8 

gantry ROI time-series comparisons were in 

agreement.

 Flexibility of tool to change sources, configurations, 

detector response, etc. reduces accuracy, but greatly 

increases it’s value to NSDD program.
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Future Work

 Sensitivity investigation to impose limits on parameters
 Incorporating background suppression
 Investigate impact of replacing solid angle calculation with 

energy dependent function that accounts for path length 
through detector media

 Additional source-in-vehicle measurements to better 
understand shielding that will be encountered in real-world 
situations

 Flexibility to be used with other systems. Backbone of tool 
will not change, output format and primitives on input.
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Tool Demo

 Show how quick & easy it is to generate simulated 

trials
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Questions?

42
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Extra Slides
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Static Vs. In-Motion
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137Cs Source Holder Issue
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SMDS Example
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N42 Example
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NORM Gradient Profile
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UI Options
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Background Primitive
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Measurement Photos
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Measurement Photos
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Measurement Photos
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Measurement Photos
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